Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 23(3): 309-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21985309

RESUMO

INTRODUCTION: Understanding sinoatrial node (SAN) development could help in developing therapies for SAN dysfunction. However, electrophysiological investigation of SAN development remains difficult because mutant mice with SAN dysfunctions are frequently embryonically lethal. Most research on SAN development is therefore limited to immunocytochemical observations without comparable functional studies. METHODS AND RESULTS: We applied a multielectrode array (MEA) recording system to study SAN development in mouse hearts acutely isolated at embryonic ages (E) 8.5-12.5 days. Physiological heart rates were routinely restored, enabling accurate functional assessment of SAN development. We found that dominant pacemaking activity originated from the left inflow tract (LIFT) region at E8.5, but switched to the right SAN by E12.5. Combining MEA recordings and pharmacological agents, we show that intracellular calcium (Ca(2+))-mediated automaticity develops early and is the major mechanism of pulse generation in the LIFT of E8.5 hearts. Later in development at E12.5, sarcolemmal ion channels develop in the SAN at a time when pacemaker channels are down-regulated in the LIFT, leading to a switch in the dominant pacemaker location. Additionally, low micromolar concentrations of tetrodotoxin (TTX), a sodium channel blocker, minimally affect pacemaker rhythm at E8.5-E12.5, but suppress atrial activation and reveal a TTX-resistant SAN-atrioventricular node (internodal) pathway that mediates internodal conduction in E12.5 hearts. CONCLUSIONS: Using a physiological mapping method, we demonstrate that differential mechanistic development of automaticity between the left and right inflow tract regions confers the pacemaker location switch. Moreover, a TTX-resistant pathway mediates preferential internodal conduction in E12.5 mouse hearts.


Assuntos
Nó Atrioventricular/fisiologia , Relógios Biológicos/fisiologia , Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiologia , Coração/embriologia , Nó Sinoatrial/fisiologia , Algoritmos , Animais , Nó Atrioventricular/efeitos dos fármacos , Nó Atrioventricular/embriologia , Relógios Biológicos/efeitos dos fármacos , Compostos de Boro/farmacologia , Sinalização do Cálcio/fisiologia , Feminino , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Gravidez , Rianodina/farmacologia , Sarcolema/efeitos dos fármacos , Sarcolema/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/embriologia , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...